Мужская Y-хромосома влияет не только на работу половых органов. Рассказываем об открытии


Виды анеуплоидий

Аутосомные

Изменения числа аутосом бывают по разным парам хромосом. Чаще всего встречаются трисомии по следующим парам хромосом, то есть ситуации, когда вместо двух хромосом — три. Трисомия по 21 паре — это синдром Дауна, трисомия по 18 паре — это синдром Эдвардса, трисомия по 13 паре — синдром Патау. Эти типы хромосомных патологий могут сочетаться с рождением живого плода, но со множественными тяжёлыми пороками развития, причём трисомии 18 и 13 отличаются очень слабой выживаемостью таких детей, а трисомия 21 несмотря на пороки развития позволяет человеку прожить достаточно длительный срок. Информация по основным трисомиям есть в соответствующих статьях на нашем сайте.

Вообще анеуплоидий по аутосомам значительно больше — они могут встречаться и по другим парам хромосом, значительно реже бывают тетрасомии или сочетания трисомий по нескольким парам одновременно, однако все они фатальны, и еще на самых ранних сроках беременности происходит самопроизвольное её прерывание.

Дополнительные Х и У хромосомы по 23 паре

Дополнительные хромосомы по 23 паре или дополнительные половые хромосомы формируют характерные клинические признаки, однако по степени своих проявлений дополнительные половые хромосомы сопровождаются значительно более мягкими дефектами. При этом, пусть очень редко, но могут встречаться тетра-, пента- и большее число хромосом, что приводит к усилению выраженности дефектов развития.

Ниже будут рассмотрены наиболее часто стречающиеся варианты дополнительных У и Х хромосом.

Синдром ХХУ — синдром Клайнфельтера

Кроме этого классического варианта есть другие более редкие сочетания с увеличением Х и У хромосом.

Данный синдром анеуплоидий по половым хромосомам характеризуется нарушением развития мужского организма в сторону его феминизации, то есть с преобладанием женских черт. Важно то, что до начала полового созревания в ряде случаев он может быть вообще не распознан, его можно лишь заподозрить по ряду косвенных признаков.

После наступления пубертатного возраста проявления становятся характерными — высокий рост, при этом женский тип фигуры с широким тазом и узкими плечами. Голос может оставаться практически без изменений — не мутирует, не становится мужским. Характерным является недоразвитие наружных половых органов и эректильная дисфункция. При этом отмечается оволосение по женскому типу. Отмечается более низкий уровень либидо у таких мужчин, очень часто возникает бесплодие ввиду нарушения развития сперматозоидов. В интеллектуальной сфере возможно некоторое отставание.

Синдром ХУУ — синдром «супермужчины»

Несмотря на название, никаких суперспособностей у таких людей нет, как впрочем и излишней агрессии, и чрезмерного потенциала в интимной сфере.

Основные черты — более низкий рост и более ранее начало полового созревания. Маскулинизация наступает раньше, нежели у сверстников, чаще встречается избыточное оволосение и ранее облысение. В интеллектуальной сфере отмечается незначительное отставание от популяции, но это связано с тем, что у таких детей с раннего детства повышенная отвлекаемость, лабильность внимания, неусидчивость, они труднее усваивают материал, именно со школы наблюдается указанное отставание. Может отмечаться некоторое снижение способности к зачатию. Хотя подавляющее большинство пациентов с синдромом ХУУ выявляется не клинически, а при различных генетических тестах, то есть «попутно»

Синдром ХХХ — синдром «суперженщины»

Аналогично предыдущему может быть «случайной находкой» при генетических исследованиях, внешне имеет минимальные проявления.

Из наиболее выраженных — некоторое снижение способности к вынашиванию, за счет большего процента самопроизвольных прерываний, могут наблюдаться минимальные проявления в репродуктивной и интеллектуальной сферах.

Дополнительные У и Х хромосомы с минимальными проявлениями

В данном случае речь идет о так называемом «мозаицизме». Это явление, когда определенная часть клеток организма содержит какой-либо вариант анеуплоидии, а остальные клитки описываются нормальной хромосомной формулой. Такая ситуация возникает, если хромосомная мутация возникла не при оплодотворении яйцеклетки, а на ранних стадиях деления зиготы. Чем позднее это происходит, тем меньшая часть клеток имеет нарушения кариотипа и тем меньше клинические проявления. Очень часто такой мозаицизм обнаруживается только при генетических исследованиях.

Изменения структуры хромосом

Возможны нарушения хромосомной структуры — делеции (утрата участка хромосомы), дупликации (повторение определенного участка хромосомы), инверсии (поворот участка хромосомы на 180°) и транслокации (перемещения участков хромосомы в новое положение). Установлена связь между мужским бесплодием и делециями, возникающими на Y-хромосоме, при нормальном кариотипе 46, xy. Даже наличие микроделеций на Y-хромосоме сопровождается различными нарушениями сперматогенеза.


Если имеются структурные аномалии хромосомы, то в кариотипе указывается: p короткое плечо хромосомы, q — длинное плечо, t — транслокация. Например, при делеции короткого плеча хромосомы 5 женский кариотип будет выглядеть так: 46, хх, 5p- (синдром «кошачьего крика»). Мать ребёнка с синдромом Дауна, обусловленным транслокацией хромосомы 14/21, будет иметь кариотип 45, ХХ, t (14q; 21q). Измененная хромосома образуется при слиянии длинных плеч хромосомы 14 и 21, а короткие плечи теряются. В любом случае, по получению анализа необходимо обратиться к генетику, который подробно объяснит значение результатов, если в них имеются отклонения. Если выявлена проблема у одного из родителей, генетик делает заключение о риске наследования ребенком того или иного заболевания или порока развития. Если беременность возможна, то все равно проводится исследование кариотипа плода, ведь не все пороки развития можно диагностировать при УЗИ, тем более, что это возможно в более поздние сроки. Определение кариотипа плода в клетках хориона дает возможность ранней диагностики наследственной патологии. В случае выявления порока развития плода, который не совместим с жизнью, проводится прерывание беременности в ранние сроки. В более поздние сроки беременности исследуются околоплодные воды и клетки кожи плода, которые получают при амнио- и кордоцентезе.

Диагностика различных типов анеуплоидий.

Единственным достоверным способом ранней внутриутробной диагностики хромосомных аномалий у плода является генетическое исследование. Подтверждение диагноза, заподозренного на основании выявленных при скрининге рисков, проводится с инвазивным забором материала, что требует чётко обоснованных показаний к проведению.

С помощью неинвазивного пренатального теста Пренетикс можно исследовать ДНК плода в венозной крови будущей матери начиная с 10-й недели беременности. Надёжность и специфичность метода позволяет отнести Пренетикс к скринингу экспертного уровня, значительно повышающему информативность традиционного скрининга первого триместра.

Нормальный набор хромосом

Известно, что вероятность невынашивания беременности значительно выше при хромосомных нарушениях у родителей. Поэтому данное обследование супругов применяется при привычном невынашивании беременности и бесплодии. Генетическое обследование помогает не только установить причину бесплодия, но и прогнозировать возможность рождения детей с хромосомной патологией. Поэтому большое значение придается дородовой диагностике хромосомных аберраций.

Кариотип – это полный набор хромосом клетки, в норме 46 хромосом: 22 пары аутосом и две половые хромосомы. У женщин ХХ, а у мужчин ХУ хромосомы. Каждая хромосома несет гены, ответственные за наследственность. Кариотип 46, хх — это нормальный женский кариотип, кариотип 46, xy соответствует нормальному мужскому кариопипу. Поэтому, если супружеская пара получила ответ — нормальный кариотип 46, xx и кариотип 46, xy, то нет поводов для переживаний. Кариотип не меняется в течение всей жизни.

Кариотипирование плода

Кариотипирование плода проводится при подозрении на врожденную патологию. При синдроме Дауна, например, имеется дополнительная 21 хромосома, поэтому кариотип девочки будет описан как 47,ХХ 21 +, а мальчика 47, ХY 21+. Синдром Кляйнфельтера встречается у 1 из 500 новорожденных мальчиков, при этом заболевании увеличивается количество Х хромосом — кариотип 47,ХХY, а при большем увеличении количества Х-хромосом 48,ХХХY и 49,ХХХХY у ребенка будут нарушения интеллекта, поэтому ставится вопрос о прерывании беременности. Кариотип при синдроме Шерешевского – Тернера будет описан так: 45X0 – утрата одной Х хромосомы. В обязательном порядке проводится предимплантационная генетическая диагностика при ЭКО, которая позволяет обнаружить серьезные отклонения в количестве хромосом.

Самые важные и интересные новости о лечении бесплодия и ЭКО теперь и в нашем Telegram-канале @probirka_forum Присоединяйтесь!

генетика, кариотипирование

Х-хромосома и система дозовой компенсации

У многих животных, в том числе и млекопитающих, и даже некоторых растений особи мужского пола наследуют одну Х-хромосому, а женского — две. Чтобы гены Х-хромосом у особей разных полов экспрессировались в одинаковых количествах, при наличии в клетке двух Х-хромосом одна «выключается», и её гены не работают. Такой процесс носит название инактивации Х-хромосомы, а то, как специальные молекулы «выключают» хромосому, именуется системой дозовой компенсации.

В «выключении» одной из двух Х-хромосом у млекопитающих участвует длинная некодирующая РНК по имени Xist (от англ. X-inactive specific transcript, дословно «Х-неактивный специфический транскрипт») — молекула рибонуклеиновой кислоты из целых 17 тысяч нуклеотидных остатков. В молекуле можно выделить несколько характерных участков — доменов [3–6], [14].

Постепенно у РНК, исходно считавшейся лишь молекулой-мессенджером на пути реализации генетической программы клетки, открывают все новые и новые функции. «Биомолекула» уже писала о многих из них: «Обо всех РНК на свете, больших и малых» [20], «РНК у истоков жизни?» [21], «Большие дела небольших молекул: как малые РНК дирижируют генами бактерий» [22], «Белки против РНК — кто первым придумал сплайсинг?» [23], «Как избавиться от РНК за несколько минут» [24]. — Ред.

Распространяясь по хромосоме, эта РНК одним из своих доменов взаимодействует с белковым комплексом по имени PRC2 (от англ. Polycomb repressive complex 2), «подтаскивая» его к тем местам, где нужно выключить гены. Комплекс, в свою очередь, специальным образом модифицирует гистоны: пришивает к ним в определённых местах метильные группы. ДНК, намотанная на такие гистоны, неактивна, и гены «выключенной» Х-хромосомы не читаются (рис. 2) [7–10], [15].


Рисунок 2. Xist выключает гены, привлекая модифицирующий гистоны комплекс белков PRC2

лаборатория Митчелла Гуттмана

С начала 2000-х годов появилось несколько работ, показывающих, что для распространения по Х-хромосоме Xist использует несколько разных доменов [14–16]. Ещё, как обнаружилось, для распространения нужно, чтобы эта РНК взаимодействовала с белками, ассоциированными с ядерным матриксом — очень динамичной пронизывающей ядро сеточкой из белков [11–13]. Но каким именно путём РНК распространяется по хромосоме, никто не понимал.

Вокруг хромосомы за шесть часов

Используя этот метод, исследователи сначала решили посмотреть, в каких местах Х-хромосомы оказывается Xist, когда хромосома инактивируется. Что же оказалось? Во-первых: Xist физически распределена по всей Х-хромосоме, кроме генов, работающих при её инактивации. Во-вторых, в участках нахождения Xist есть следы работы белкового комплекса, который, как мы знаем, Xist «подтаскивает» за собой для выключения генов: по-особому метилированые гистоны.

Каким же путём РНК распределяется по хромосоме? Чтобы ответить на этот вопрос, сначала учёные гибридизовали изучаемую РНК в клетках с комплементарной молекулой РНК, содержащей флуоресцентную метку. При введении в клетку такой флуоресцентно меченной РНК две молекулы комплементарно спариваются, и на фотографии, сделанной на конфокальном микроскопе, светится только то место в клетке, где находится изучаемый транскрипт. И вот как молекулы РНК Xist «разбегаются» по хромосоме через некоторое время после начала транскрипции (рис. 5а): через час мы видим группу молекул в области гена Xist, через три часа молекулы оказываются распределены уже по большей площади Х-хромосомы, и, наконец, через шесть часов они окутывают хромосому почти целиком. Причём, как выяснилось посредством метода RAP, через какое-то время после начала транскрипции большая часть молекул Xist сосредотачивается в определённых местах хромосомы, накапливаясь там перед тем, как уже оттуда распространиться по всей хромосоме (рис. 5б).


Рисунок 5. Распространение Xist по ДНК. а — Наблюдение за распространением молекул Xist методом флуоресцентной гибридизации (приведены четыре момента времени после начала транскрипции). Синим покрашена ДНК, розовым светятся места локализации Xist. б — Обогащение молекулами Xist разных участков Х-хромосомы через разное время после начала транскрипции этой РНК. Высота пика на каждом участке соответствует степени обогащения. Выделяющиеся на общем фоне пики повыше — это места, где Xist обнаруживается сначала.

[1]

Почему же Xist оказывается сначала именно в этих местах, а не где-то ещё? Тут есть две логические возможности: или в этих местах есть молекулы, взаимодействующие с Xist и «собирающие» туда РНК, или Xist оказывается в этих местах потому, что они очень близко расположены к её гену, и, распространяясь от места своей транскрипции, Xist в первую очередь в эти места и попадает. Эти две гипотезы и проверяли ученые.

Сначала они сравнили места раннего местонахождения Xist и опубликованные последовательности ДНК использованных в эксперименте клеток: а не выделяются ли эти места какой-нибудь особенной последовательностью, которая представлена в основном в них и могла бы прямо или через другие молекулы взаимодействовать с Xist? Нет, увы, таких мест не нашлось.

Тогда взялись за проверку второй гипотезы. Для этого использовали опубликованные данные, полученные с помощью продвинутой версии метода фиксации конформации хромосом (Chromosome Conformation Capture, сокращённо 3C) — Hi-C, который позволяет смотреть, с какой частотой небольшие участки ДНК располагаются в ядре близко друг к другу и, упрощённо говоря, восстановить по этим частотам трёхмерную хромосомную «карту». Оказалось, что частоты встречаемости РНК Xist на участках ДНК, удалённых от места её транскрипции, сильно коррелируют с частотами контактов этих участков с участком транскрипции Xist по данным Hi-C (рис. 6а). Вероятно, РНК Xist сначала сосредотачивается недалеко от места своей транскрипции (рис. 6б). Чтобы окончательно убедиться в этом, исследователи вставили ген Xist в другое место хромосомы. И через какое-то время после начала транскрипции РНК Xist снова оказалась в местах недалеко от своего нового участка транскрипции: вторая гипотеза оказалась верна.


Рисунок 6. Локализация транскриптов Xist на X-хромосоме. а — Частоты ранней локализации транскриптов Xist на участках X-хромосомы (показаны красным) коррелируют с частотами контактов участков X-хромосомы с геном Xist по данным модифицированного метода 3C (показаны синим). б — Молекулы Xist от места своей транскрипции сначала распространяются к ближайшим в пространстве участкам.

[1]

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]