Когда бактерии лечат
Первым, кто предположил существование бактерий, способных избавить человечество от тяжелых болезней, был французский микробиолог и химик Луи Пастер. Он выдвинул гипотезу о своего рода иерархии у живых микроорганизмов — и о том, что одни могут быть сильнее других. В течение 40 лет ученый искал варианты спасения от тех недугов, что долгие годы считались неизлечимыми, и ставил опыты на известных ему видах микробов: выращивал, очищал, подселял друг к другу. Именно так он обнаружил, что бактерии опаснейшей сибирской язвы могли погибать под воздействием других микробов. Однако дальше этого наблюдения Пастер не продвинулся. Самое обидное, что он даже не подозревал, насколько был близок к разгадке. Ведь «защитником» человека оказалась такая привычная и знакомая многим… плесень.
Благодетель человечества. Как Луи Пастер создавал первые прививки
Подробнее
Именно этот грибок, вызывающий сегодня у многих сложные эстетические чувства, стал предметом дискуссии двух русских врачей в 1860-х годах. Алексей Полотебнов и Вячеслав Манассеин спорили — является ли зеленая плесень своего рода «прародителем» для всех грибковых образований или нет? Алексей выступал за первый вариант, более того, был уверен, что от нее произошли все микроорганизмы на земле. Вячеслав же утверждал, что это не так.
От жарких словесных дебатов медики перешли к эмпирическим проверкам и начали параллельно два исследования. Манассеин, наблюдая за микроорганизмами и анализируя их рост и развитие, обнаружил, что там, где разрастается плесень… других бактерий нет. Полотебнов, проводя свои независимые испытания, выявил то же самое. Единственное — он выращивал плесень в водной среде — и по окончании эксперимента обнаружил, что вода не пожелтела, осталась чистой.
Статья по теме
Открытие новой эры. Антибиотики изменили наш мир до неузнаваемости
Ученый признал поражение в споре и… выдвинул новую гипотезу. Он решил попробовать приготовить на основе плесени бактерицидный препарат — специальную эмульсию. Полотебнов начал применять этот раствор для лечения больных — в основном для обработки ран. Результат был ошеломляющим: пациенты шли на поправку гораздо быстрее, чем раньше.
Свое открытие, а также все научные выкладки, Полотебнов не оставил в тайне — опубликовал и представил на суд общественности. Но эти поистине революционные опыты остались незамеченными — официальная наука отреагировала вяло.
Хронология открытий
Создание антибиотиков было постепенным, при этом использовался колоссальный опыт поколений, доказанные общенаучные факты. Чтобы антибактериальная терапия в современной медицине получилась настолько успешной, многие ученые «приложили к этому руку». Изобретателем антибиотиков официально считается Александр Флеминг, но помощь пациентам оказали и другие легендарные личности. Вот что необходимо знать:
- 1896 г — Б. Гозио создал микофеноловую кислоту против сибирской язвы;
- 1899 г — Р. Эммерих и О. Лоу открыли местный антисептик на основе пиоценазы;
- 1928 г — А. Флеминг открыл антибиотик;
- 1939 г — Д. Герхард получил Нобелевскую премию по физиологии и медицине за антибактериальное действие пронтозила;
- 1939 г — Н. А. Красильников и А. И. Кореняко стали изобретателями антибиотика мицетин, Р. Дюбо открыл тиротрицин;
- 1940 г — Э. Б. Чейн и Г. Флори доказали существование стабильного экстракта пенициллина;
- 1942 г — З. Ваксман предложил создание медицинского термин «антибиотик».
О пользе открытых форточек
Стоило бы Алексею Полотебнову быть более настойчивым, а официальным медиками немного менее инертными — и Россия была бы признана родиной изобретения антибиотиков. Но в итоге развитие новой методики лечения приостановилось на 70 лет, пока за дело не взялся британец Александр Флеминг. Ученый с самой юности хотел найти средство, которое позволяло бы уничтожать болезнетворные бактерии и спасать людям жизнь. Но главное открытие своей жизни он сделал случайно.
От лечения оспы до пенициллина. Пять великих медицинских открытий
Подробнее
Флеминг занимался изучением стафилококков, при этом у биолога была одна отличительная особенность — он не любил наводить порядок на рабочем столе. Чистые и грязные банки могли вперемешку стоять неделями, при этом он забывал закрывать часть из них.
Однажды ученый оставил пробирки с остатками колоний выращенных стафилококков на несколько дней без внимания. Когда же он вернулся к стеклам, то увидел, что они все заросли плесенью — скорее всего, споры залетели через открытое окно. Флеминг не стал выбрасывать испорченные образцы, а с любопытством истинного ученого поместил их под микроскоп — и был поражен. Никакого стафилококка не было, осталась лишь плесень и капли прозрачной жидкости.
Статья по теме
Медики-герои. 5 историй людей, посвятивших жизнь медицине
Флеминг стал экспериментировать с разными видами плесени, выращивая из обычной зеленой серую и черную и «подсаживая» ее к другим бактериям — результат был удивительным. Она словно «отгораживала» от себя вредоносных соседей и не позволяла им размножаться.
Он первым обратил внимание и на «влагу», которая возникает рядом с грибковой колонией, и предположил, что жидкость должна обладать буквально «убийственной силой». В результате долгих исследований ученый выяснил, что эта субстанция может уничтожать бактерии, более того, своих свойств она не теряет даже при разведении водой в 20 раз!
Найденное вещество он назвал пенициллином (от названия плесени Penicillium — лат.).
С этого времени разработка и синтез антибиотика стали основным делом жизни биолога. Его интересовало буквально все: на какой день роста, в какой среде, какой температуре грибок работает лучше всего. В результате испытаний выяснилось, что плесень, являясь крайне опасной для микроорганизмов, безвредна для животных. Первым человеком, на котором испытали действие вещества, стал ассистент Флеминга — Стюарт Греддок, который страдал от гайморита. В качестве эксперимента ему ввели в нос порцию вытяжки из плесени, после чего состояние больного улучшилось.
Результаты своих исследований Флеминг представил в 1929 году в Лондонском медицинско-научном клубе. Удивительно но, несмотря на страшные пандемии — только за 10 лет до этого «испанка» унесла жизни миллионов человек, — официальная медицина не сильно заинтересовалась открытием. Хотя Флеминг не обладал красноречием и, по отзывам современников, был «тихий, застенчивый человек» — он все же взялся за рекламу препарата в научном мире. Ученый регулярно, в течение нескольких лет печатал статьи и делал доклады, в которых упоминал о своих опытах. И в итоге, благодаря этой настойчивости коллеги-медики все же обратили внимание на новое средство.
Спасительная плесень: история создания пенициллина
Подробнее
Что такое антибиотики
С момента появления первого антибиотика прошло уже много десятилетий, но об этом открытии хорошо знают медицинские работники во всем мире, простые обыватели. Сами по себе антибиотики – это отдельная фармакологическая группы с синтетическими компонентами, цель которых – нарушить целостность мембран патогенных возбудителей, прекратить их дальнейшую активность, незаметно вывести из организма, предотвратить общую интоксикацию. Первые антибиотики и антисептики появились в 40-х годах прошлого века, с того времени их ассортимент значительно пополнился.
Полезные свойства плесени
От повышенной активности болезнетворных бактерий хорошо помогают антибиотики, которые были выработаны из плесневых грибов. Лечебное действие антибактериальных препаратов в организме системное, все это благодаря полезным свойствам плесени. Первооткрывателю Флемингу лабораторным методом удалось выделить пенициллин, польза такого уникального состава представлена ниже:
- зеленая плесень подавляет бактерии устойчивые к другим лекарственным средствам;
- польза плесневого грибка очевидна при лечении брюшного тифа;
- плесень истребляет такие болезненные бактерии, как стафилококки, стрептококки.
«Выживает сильнейший»
Чарльз Дарвин
Очевидно, что чем проще устроен механизм, тем легче его и починить «на коленке», и улучшить технические характеристики, не затрачивая слишком много времени. Бактерии — весьма простые устройства. Когда у тебя всего одна клетка, нет необходимости то и дело разбирать ядро и распаковывать хромосомы, геном не перегружен множеством регуляторных элементов, и весь генетический материал экономно используется для поддержания лишь самых необходимых жизненных функций, то и адаптировать его под изменившиеся условия куда проще. Жизнь у бактерии короткая — минут 20–30. Но если ей ничто не помешает, то заканчивается она обычно делением. Иными словами, через каждые полчаса на месте одной клетки будут уже две, а к концу суток успеет смениться около семидесяти поколений. Поэтому с эволюционной с точки зрения, время для бактерий течёт быстрее, чем для нас, а значит, и естественный отбор работает тоже быстрее. Каким бы мощным ни был антибиотик, всегда есть шанс, что среди миллиарда его жертв найдется хотя бы одна, которая устоит благодаря случайно приобретенной мутации. А сумев выжить, получит эксклюзивную возможность размножиться и передаст эту способность выживать дочерним клеткам, а те, в свою очередь — своим. Из потомков уцелевших бактерий рано или поздно сформируется популяция, совершенно невосприимчивая к старому антибиотику — в точности по Дарвину [13].
Рисунок 3. Лекарства составляют основу современной медицины
NutritionFacts.org
Сходным образом приспосабливаются и высшие организмы, находящиеся под постоянным прессингом. Насекомые, вредящие сельскохозяйственным культурам, вырабатывают устойчивость к пестицидам, разве что у них это занимает гораздо больше времени. Бактерии же, мало того, что размножаются быстро, но и умеют «по-соседски» обмениваться генами непосредственно друг с другом (это называется «горизонтальный перенос генов»). Всё это только ещё больше ускоряет их адаптацию к новым условиям.
Как это всё работает?
Механизмы воздействия современных антибиотиков на клетку-мишень могут быть самыми разными [7]. Представители бета-лактамной группы (куда входит и пенициллин) ингибируют синтез пептидогликана, составляющего основу клеточной стенки бактерий. Без него осмотическое давление внутри клетки разрушает плазматическую мембрану, и клетка лопается, как воздушный шарик. К сожалению, такие антибиотики лишь подавляют рост новых цепей пептидогликана, но не разрушают уже сформированные. Поэтому ими можно остановить деление клеток и их активный рост, однако ничего нельзя поделать с бактериями, находящимися в стадии покоя, или с так называемыми L-формами, у которых клеточная стенка вообще отсутствует, но которые сохранили способность к развитию. Сульфаниламиды предпочитают бить по внутриклеточному метаболизму жертвы, например, блокируя химические реакции, необходимые для синтеза фолиевой кислоты. Бактерия не умеет поглощать витамины извне, поэтому невозможность синтезировать их самостоятельно для нее смертельна. Некоторые антибиотики (аминокумарины и фторхиноловые соединения) выводят из строя бактериальную ДНК-гиразу — фермент, расплетающий суперскрученную хромосому для ее репликации. Тем самым клетка лишается возможности копировать свою ДНК и размножаться. Еще один способ убить бактерию — это нарушить синтез ее белков. По этой схеме работают тетрациклиновые антибиотики: они присоединяются к малой субъединице бактериальной рибосомы — органеллы, отвечающей за построение белков на матрице РНК [8].
Этот список не полон, существуют и другие группы антибиотиков. Так или иначе, почти всегда их мишень — это белок, будь то бактериальный фермент, метаболит, элемент цитоскелета, протонный насос или что-то еще [9]. Даже чтобы просто попасть внутрь клетки, антибиотику сперва необходимо пройти сквозь ее клеточную стенку и мембрану по каналам, которые тоже состоят из белков (поринов) [10], [11]. И тут есть два немаловажных момента. Во-первых, белков чудовищно много, и они очень разнообразны, отсюда и разнообразие антибиотиков. Каждый из них поражает «свой» белок — и безвреден для всех микроорганизмов, у которых такого белка нет. Но куда страшнее то, что белки легче и быстрее, чем другие соединения (углеводы, фосфолипиды и т. д.), подвержены адаптивным изменениям. Именно это лежит в основе масштабной проблемы, которая пока не проявляет себя в полную силу, но уже маячит на горизонте и в скорой перспективе грозит обернуться нешуточной катастрофой. Речь идет об умении бактерий достаточно быстро — за считанные месяцы — вырабатывать устойчивость (резистентность) к любому антибиотику [12].
Рисунок 2. Взаимодействие метициллин-устойчивого золотистого стафилококка (жёлтый) и лейкоцита человека. Штамм MRSA252 является одной из наиболее частых причин госпитальных инфекций в США и Великобритании.
National Institute of Allergy and Infectious Diseases
«В пятидесяти случаях из ста даже лучшие из них не знают, как вас лечить»
Агата Кристи
Фокус в том, что инфекция может быть действительно вызвана злыми бактериями, а может и чем-то другим — например, археями, грибами или даже протистами. И против всего этого великолепия антибиотики едва ли будут эффективны. С вирусами — ещё хуже. Вылечить антибиотиком какой-нибудь грипп или ОРВИ у вас не будет вообще ни единого шанса. В отличие от бактерии — клеточной структуры, обладающей собственным геномом, белоксинтезирующим аппаратом, ферментами метаболизма и проч., — вирус из всего вышеперечисленного имеет только геном. Фактически это всего лишь молекула ДНК или РНК, упакованная в белковый капсид, которая реплицируется внутри зараженной клетки хозяина, используя ее же ресурс. Этакий саботажник, проникший на чужую фабрику со своими чертежами и штампующий на фабричном станке копии самого себя. Ну не ломать же, в самом деле, ради того, чтобы остановить нарушителя, собственное оборудование!
Согласно данным статьи, недавно вышедшей в журнале Американской медицинской ассоциации [4], в США из десяти пациентов, обратившихся к врачу с жалобами на боль в горле, шестерым прописывают антибиотики. Препаратом выбора по-прежнему остается пенициллин из-за невысокой цены и хорошей переносимости. Между тем эффективен он, только когда инфекция вызвана стрептококком группы А, а это всего лишь один случай из десяти [5]. Выходит, что врач, прописывающий вам антибиотик при болях в горле, чаще всего либо не уверен в диагнозе, либо банально перестраховывается.
Более того, даже если причина инфекции в бактерии, это вовсе не гарантия, что конкретный антибиотик на нее подействует. Все зависит от того, с каким видом или даже штаммом приходится иметь дело. С одной стороны, это и хорошо, ведь в здоровом организме всегда присутствует своя микрофлора, которая живет с ним в благополучном симбиозе и которую лучше не трогать. С другой стороны, именно по этой же причине не существует универсальных препаратов, которые одинаково хорошо помогали бы от всего сразу. Чтобы не действовать наугад, перед тем как назначить лечение, обычно делают посев культуры из образца, взятого у больного, и поочередно проверяют ее на устойчивость к целому пулу антибиотиков, после чего выбирают наиболее подходящий. К несчастью, процедура эта требует как минимум нескольких дней и наличия микробиологической лаборатории под рукой, а инфекционный процесс часто протекает куда стремительней. И может статься так, что когда придут результаты анализов… лечить будет уже поздно.
Конечно же, исследователи ищут и другие способы диагностики инфекций на ранних стадиях, например, Алан Джармуш из Универистета Пурду предложил использовать для этих целей масс-спектральный анализ [6]. Большие надежды возлагают и на ДНК-диагностику возбудителей, хотя до широкого применения этих методов на практике пока ещё далеко.
Плюсы и минусы
Можно однозначно сказать – изобретение современных антибиотиков было необходимо, и позволило спасти жизни многих людей. Однако, как и любого изобретения, у этих лекарств есть положительные и отрицательные стороны.
Положительный аспект создания антибиотических средств:
- болезни, которые ранее считались смертельными, оканчиваются летальным исходом во много раз реже;
- когда изобрели эти препараты, продолжительность жизни людей увеличилась (в некоторых странах и регионах в 2-3 раза);
- новорожденные и младенцы умирают в шесть раз реже;
- смертность женщин после родов сократилась в 8 раз;
- сократилось количество эпидемий, и количество пострадавших от них.
После того, как 1-й препарат антибиотик был открыт, стало известно и негативной стороне этого открытия. На время создания лекарства на основе пенициллина, существовали бактерии, которые к нему устойчивы. Поэтому ученым пришлось создавать несколько других видов медикаментов. Однако постепенно микроорганизмы выработали устойчивость к «агрессору». Из-за этого появилась необходимость создавать новые и новые препараты, которые будут способны уничтожать мутировавших возбудителей болезней. Таким образом, ежегодно появляются новые виды антибиотиков, и новые виды бактерий, которые к ним устойчивы. Некоторые исследователи говорят, что на данный момент примерно одна десятая возбудителей инфекционных болезней имеет устойчивость к антибактериальным препаратам.
Конкурс «био/мол/текст»-2014
Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2014 в номинации «Лучший обзор».
Главный спонсор конкурса — дальновидная . Конкурс поддержан ОАО «РВК».
Спонсором номинации «Биоинформатика» является Институт биоинформатики. Спонсором приза зрительских симпатий выступила фирма Helicon. Свой приз также вручает Фонд поддержки передовых биотехнологий.
Благодаря естественному отбору мы развили в себе способность к сопротивлению; мы не уступаем ни одной бактерии без упорной борьбы. Герберт Уэллс. Война миров