Что такое наследственные заболевания и как с ними быть?


6 Августа 2021

2729

Профилактика

Гены — основа наследственности. Участки ДНК наследуются от родителей и предопределяют то, как выглядит человек. Иногда гены мутируют, и у наследника развиваются генетические заболевания. Очень важно знать, как именно выявить патологии на ранних стадиях. Ведь большинство болезней этого типа не лечится, а требует поддерживающей терапии.

Что такое наследственные заболевания?

Наследственные заболевания — это заболевания, обусловленные генными или хромосомными мутациями. У людей от 20 000 до 25 000 генов. Генетическая мутация возникает, когда изменяется один или несколько генов. Если это генетическое изменение передается детям, то это наследственное генетическое заболевание.

При совпадении у партнеров статусов носительства определенных болезней есть высокий риск рождения ребенка с наследственным заболеванием. Если у вас не проявляются симптомы заболевания, вы по-прежнему можете быть носителем и передать мутации своим детям.


«Когда я сдала тест, жить стало спокойнее»: чем анализ генов полезен нашим клиентам

Многие генетически обусловленные заболевания проявляются не сразу после рождения, а спустя некоторое время. От наследственных заболеваний следует отличать врожденные заболевания, вызванные внутриутробными повреждениями, например, инфекцией или внешними воздействиями.

Гемоглобинопатии и ферментопатии

В основном генные наследственные заболевания с нарушением структурных белков имеют аутосомно-доминантный характер наследования. Вследствие подобных генных мутаций развиваются наследственно обусловленные заболевания, которые провоцируют иммунодефицитное состояние. При этом тяжелые наследственные заболевания особенно тяжело протекают при наличии агаммаглобулинемии, когда она сочетается с полным отсутствием вилочковой железы. Из гемоглобинопатий наиболее распространена серповидно-клеточная анемия. Это заболевание характеризуется образованием гемоглобина с аномальной структурой. Причины наследственных заболеваний по типу серповидно-клеточной анемии заключаются в замене остатков глютаминовой кислоты фрагментами ванилина. Эти изменение являются следствием серьезных мутаций на генном уровне. После того, как была впервые описана серповидно-клеточная анемия, ученые начали еще более активно изучать признаки наследственных заболеваний, в основе которых лежит та или иная патология образования гемоглобина. Основной целью исследований является поиск методов, благодаря которым могла бы быть проведена эффективная профилактика наследственных заболеваний.

Чем отличаются наследственные заболевания от врожденных нарушений?

Генетические заболевания являются результатом изменения одного или нескольких генов и могут передаваться в поколениях или нет.

Все наследственные заболевания имеют генетическое происхождение, т. е. являются результатом изменения одного или нескольких генов и передаются из поколения в поколение. Симптомы могут не проявляться с самого рождения.

Врожденные нарушения могут быть наследственными или нет, а симптомы могут проявляться с рождения. Но их появление не обязательно связано с генетикой.

Мультифакториальные генетические болезни

Мультифакториальными генетическими заболеваниями называют патологии, возникающие при сочетании генетической предрасположенности и влиянии окружающей среды. Простой пример: пациент предрасположен к раку лёгких + в течении нескольких лет злоупотребляет курением. Соответственно, риск возникновения заболевания увеличивается в 2 и более раз.

К наиболее часто встречающимся мультифакториальным болезням относятся псориаз, цирроз печени, ревматоидный артрит, ишемическая болезнь сердца, бронхиальная астма.

Виды наследственных заболеваний

Наследственные заболевания разделяются на хромосомные, генные и митохондриальные.

Хромосомные заболевания

В настоящее время описано около 1000 форм хромосомных заболеваний. Хромосомные заболевания возникают в результате изменения числа или структуры хромосом. Они характеризуются общими признаками: маленькая масса и длина тела при рождении, отставание в умственном и физическом развитии, задержка и аномалии полового развития и прочее.

Хромосомные заболевания наследуются редко. И более чем в 95% случаев риск повторного рождения в семье ребенка с хромосомной патологией не превышает общепопуляционного уровня. Хромосомные заболевания с аномалиями числа хромосом включают: синдром Патау, синдром Эдвардса, синдром трисомии хромосомы 8. А хромосомные заболевания с аномалиями структуры хромосом — синдром Ди Джорджи, синдром Вольфа-Хиршхорна, синдром «кошачьего крика», синдром Альфи, синдром Орбели.

Моногенные заболевания

Моногенные заболевания возникают в результате повреждения ДНК на уровне гена. Количество моногенных заболеваний по некоторым оценкам достигает 5000.

Среди признаков моногенных болезней можно выделить: различные формы умственной отсталости, дефекты органов слуха, зрения, скелетные дисплазии, болезни нервной, эндокринной, иммунной и других систем. К числу наиболее известных моногенных болезней относятся муковисцидоз, гемофилия А и В, болезнь Гоше, миодистрофия Дюшенна/Беккера, спинальная мышечная атрофия, дальтонизм.

Выявить тяжелые моногенные заболевания можно с помощью пренатальной диагностики, а также, определив наличие мутаций у родителей с помощью генетического теста.

Интереснее всего мне было узнать об особенностях метаболизма. Именно поэтому я выбрала Атлас: только тут есть достаточно объемный раздел на эту тему. Например, всю жизнь я борюсь с весом, мигренью, болями в шее и спине, анемией.


Что можно узнать из генетического теста?

Митохондриальные заболевания

Митохондриальные заболевания обусловлены генетическими, структурными, биохимическими дефектами в функционировании митохондрий, которые приводят к нарушению тканевого дыхания.

Митохондрии содержат свою собственную ДНК. А болезни, вызванные мутациями в митохондриальной ДНК, наследуются исключительно по материнской линии. Если именно таким образом было унаследовано митохондриальное заболевание, существует 100% вероятность того, что каждый ребенок в семье его унаследует.

Симптомы могут включать в себя: нарушение роста, слабость мышц, аутизм, ментальные расстройства, проблемы с дыханием, слухом и зрением. Примеры митохондриальных заболеваний: синдром Лея, синдром Вольфа-Паркинсона-Уайта, наследственная оптическая нейропатия Лебера и другие.

Полигенные или мультифакториальные заболевания

Существуют также болезни с наследственной предрасположенностью, которые называют мультифакториальными или полигенными заболеваниями.

Мультифакториальные заболевания обусловлены наследственными факторами риска, и в значительной степени — неблагоприятным воздействием среды. К мультифакториальным заболеваниям относятся большинство хронических заболеваний, включая сердечно-сосудистые, эндокринные, иммунные, нервно-психические, онкологические и др. Например, бронхиальная астма, сахарный диабет, ревматоидный артрит, гипертоническая болезнь сердца и т.д.

Генные мутации

Генные (точечные) мутации – это те, что возникают в результате изменения химической структуры гена и представляют собой замену, удаление или вставку нуклеотида. Возникают чаще, чем хромосомные и геномные, однако в меньшей степени меняют структуру ДНК. Также к генным мутациям относятся транслокации (перенос), дупликации (повторение), инверсии (переворот на 180°) участков гена, но не хромосомы.

Пример 1:

рассмотрим мутацию ГТТ ЦЦЦ ГГТ → ГТЦ ЦЦЦ ГГТ.

В первом триплете произошла тимина заменился на цитозин. Триплеты ГТТ и ГТЦ кодируют глутаминовую кислоту, поэтому данная мутация не вызвала изменений в структуре белка: глу-гли-про → глу-гли-про.

В других же случаях замена нуклеотида может изменить порядок аминокислот в молекуле белка и привести к фенотипическим последствиям.

Пример 2:

ГТТ ЦЦЦ ГГТ → ГТГ ЦЦЦ ГГТ.

В первом триплете тимин заменился на гуанин. ГТТ кодирует глутаминовую кислоту, а ГТГ — гистидин. Соответственно, первичная структура белка изменяется: глу-гли-про → гис-гли-про. Существует большая вероятность появления фенотипических изменений.

Как передаются наследственные заболевания?

Организм человека состоит из триллионов клеток. Каждая клетка имеет ядро, которое содержит хромосомы. Каждая хромосома состоит из плотно свернутых нитей дезоксирибонуклеиновой кислоты (ДНК).

Гены — это инструкции по сборке белков в нашем организме, которые определяют специфические черты каждого человека, например, цвет глаз или волос. Большинство клеток в организме обычно содержат 46 хромосом, организованных в 23 пары. В каждой из этих 23 пар есть одна унаследованная хромосома от отца и одна — от матери. Из 23 пар 22 пары одинаковые у женских и мужских организмов, а одна оставшаяся определяет, являетесь вы мужчиной (XY) или женщиной (XX).

Мутации, из-за которых возникают наследственные заболевания, могут иметь доминантный или рецессивный характер наследования.

Доминантное наследование означает, что только одна копия гена — от матери или отца — должна иметь мутацию (или патогенный вариант гена) для проявления признака или заболевания. А при рецессивном типе человек наследует две измененные копии одного и того же гена.

Аутосомно-доминантный паттерн наследования

При аутосомно-доминантном наследовании заболеваний генетически обусловленная болезнь проявляется в том случае, если у человека есть хотя бы один мутированный ген, и этот ген не расположен на половых (Х и Y) хромосомах.

Болезнь Хантингтона и синдром Марфана — два примера аутосомно-доминантных болезней. Мутации в генах BRCA1 и BRCA2, которые также связаны с раком молочной железы, передаются по этой схеме.

Аутосомно-рецессивный паттерн наследования

При аутосомно-рецессивном наследовании мутируют обе копии генов. Чтобы унаследовать аутосомно — рецессивное заболевание, такое как муковисцидоз, спинальная мышечная атрофия, или фенилкетонурия (ФКУ), оба родителя должны быть носителями. Ребенок наследует две копии дефектного гена — по одной от каждого родителя. Например, люди, имеющие одну копию гена с мутацией, а вторую — без мутации, называются носителями, потому что сами они здоровы.

Х-сцепленное рецессивное наследование

В Х-сцепленном рецессивном наследовании мутированный ген находится на Х-хромосоме. Болезнь проявляется только в случае, если другой Х-хромосомы с нормальной копией того же гена у человека нет.

Мышечная дистрофия Дюшенна, некоторые виды дальтонизма и гемофилия А — примеры рецессивных заболеваний, связанных с X-хромосомой. Мужчина с рецессивным заболеванием, связанным с X-хромосомой, передаст свою нетронутую Y-хромосому сыновьям, и ни один из них не пострадает. Если он передаст свою Х-хромосому (с дефектным геном) своим дочерям, то все они будут носителями болезни. У его дочерей может не быть симптомов или только легкие признаки заболевания, но они могут передать мутированный ген своим детям.

Женщины-носители рецессивного заболевания, связанного с X-хромосомой, часто имеют лёгкие признаки заболевания или вообще не имеют симптомов. Это связано с тем, что у женщин-носителей есть одна нормальная копия гена и одна мутированная копия. Нормальная копия обычно компенсирует дефектную копию в женском организме, в отличие от мужчин, у которых только одна X-хромосома.

Женщины, имеющие только один патологический ген, передают заболевание в среднем половине своих детей вне зависимости от пола. Женщины же, имеющие два патологических гена, передают заболевание всем своим детям. К таким заболеваниям относятся гемофилия А и дальтонизм.


Как генетическое тестирование помогает при планировании семьи

Если вы знаете или предполагаете, что у вас или вашего партнера в семейной истории есть какое-либо генетическое заболевание, вы можете определить это с помощью Генетического теста Атлас. Генетическое консультирование поможет вам узнать о методах лечения, профилактических мерах и репродуктивных возможностях.

Направления генетических обследований

Сегодня врачи выявляют генетические заболевания с высокой точностью, так как передовые технологии позволяют буквально заглянуть внутрь гена, определить, на каком уровне произошло нарушение.

На заметку В зарубежной прессе уже появляются сообщения о том, что ведутся эксперименты по применению методов редактирования генома для борьбы с некоторыми заболеваниями. В частности, журнал Nature упоминал о подобных экспериментах в области борьбы с ВИЧ[9].

Есть несколько направлений обследований.

Диагностическое тестирование

Диагностическое тестирование проводится, если у пациента есть симптомы или особенности внешнего развития, служащие отличительной чертой генетического заболевания. Перед направлением на диагностическое тестирование проводят всесторонний осмотр пациента. Одна из отличительных черт наследственных заболеваний — это поражение нескольких органов и систем[10], поэтому при выделении целого ряда отклонений от нормы врач направляет пациента на молекулярно-генетическую диагностику.

Так как многие наследственные заболевания (например, синдромы Дауна, Эдвардса, Патау) связаны с нарушением количества хромосом (кариотипа), то для их подтверждения проводят кариотипирование, то есть изучение количества хромосом. Для анализа требуются клетки крови, которые в течение нескольких дней выращивают в особой среде, а затем окрашивают. Так врачи выделяют и идентифицируют каждую хромосому, определяют, нарушен ли их количественный состав[11], отмечают особенности внешнего строения.

Для выявления мутаций конкретных генов применяется метод ПЦР — полимеразной цепной реакции. Его суть состоит в выделении ДНК и многократном воспроизводстве интересующего исследователя участка. Как отмечают специалисты, преимущество ПЦР — его высокая точность: здесь почти невозможно получить ложноположительный результат. Метод удобен еще и тем, что для исследования может быть взята любая ткань организма[12].

Пренатальная и предимплантационная диагностика

Если вы знаете, что у вас в семье или в семье супруга были случаи наследственных болезней, то, конечно, захотите выяснить, какова вероятность проявления их у ваших детей. Врачи часто предлагают будущим родителям сделать пренатальную диагностику. А если пара использует вспомогательные репродуктивные технологии, то и предимплантационную генетическую диагностику плода (ПГД).

ПГД нужно сделать, если возраст матери превышает 35 лет, если у пары уже были прерывавшиеся беременности, а также родились дети с наследственными заболеваниями. Также врачи рекомендуют делать ПГД, если родители являются носителями генетического недуга. В этом случае в семье есть случаи проявления патологии, но сами супруги здоровы. А вот вероятность проявления болезни у ребенка может достигать 50%, причем ПГД помогает точно определить этот показатель. Анализ проводится, когда эмбрион, полученный «в пробирке», вырастает до стадии 6 или 8 клеток [13].

Пренатальная генетическая диагностика проводится, когда ребенок еще находится в утробе матери. Предположить наличие генетических отклонений врач может на основании анализов крови матери или по результатам УЗИ плода. Поэтому на начальном этапе беременная проходит трехмаркерный скрининг: в ее крови определяют уровень АФП, β-хорионического гонадотропина и эстриола. Если их концентрация отлична от нормы, то врач рекомендует выполнить генетическое обследование ребенка. Для этого с помощью пункции берут амниотическую жидкость и проводят кариотипирование плода. Единственный недостаток этого метода — долгий период ожидания результатов. Если последний будет негативным, то женщина просто может не успеть принять решение о прерывании беременности. Есть и альтернатива — анализ ворсин хориона. Его можно сделать на раннем сроке, но получение материала представляет угрозу для протекания беременности[14].

В последнее время появилась еще одна возможность пренатального обследования плода — неинвазивный пренатальный ДНК-тест (НИПТ-тест). В этом случае нужна только кровь матери. Точность теста достигает 99%, причем можно сделать обследование как на самые часто встречающиеся генетические патологии, так и полное исследование плода[15].

Определение носительства

Рассматривая виды наследования генетических заболеваний, мы упомянули об аутономно-рецессивном способе и о наследовании, сцепленном с полом. Человек может быть здоров, но в его генотипе при этом присутствует патологический ген. Выявить это помогает анализ на носительство. Многие делают его на стадии планирования беременности, чтобы вычислить вероятность рождения ребенка с генетическими заболеваниями.

Например, такая болезнь, как гемофилия, проявляется только у мужчин, женщины не болеют, но могут быть носителями. Поэтому женщинам, у которых есть родственники с проблемами свертывания крови, перед зачатием рекомендуется сделать скрининг гетерозиготного носительства, чтобы определить вероятность рождения мальчика с гемофилией[16].

Предсказательное генотипирование

И даже если у человека нет никаких признаков наследственных заболеваний, он все равно может пройти генетическую диагностику. Зачем? Дело в том, что только лишь нарушениями в генах определяются далеко не все наследственные заболевания. Ко многим патологиям может быть предрасположенность. Досимптоматическая диагностика, или ДНК-идентификация, выявляет ее[17]. Во многих клиниках это обследование носит название «генетический паспорт», его достаточно сделать один раз, потому что полученные результаты со временем не меняются.

По итогам ДНК-идентификации врач дает пациенту рекомендации: начиная от образа жизни и диеты и заканчивая профессиональными рисками. Следование им помогает избежать развития многих заболеваний.

Как лечить наследственные заболевания и как с ними жить?

Раньше наследственные заболевания были неизлечимы. Сейчас это по-прежнему остаётся проблемой для многих заболеваний, но для некоторых из них методы лечения уже найдены. Например, это касается болезней, связанных с нарушением метаболизма.

При большинстве наследственных нарушений обмена веществ один фермент либо вообще не вырабатывается организмом, либо вырабатывается в форме, которая не работает. Например, при отсутствии какого-либо фермента в организме могут накапливаться токсичные вещества или может не синтезироваться необходимый продукт — как при гемохроматозе 1 типа.

При этом заболевании организм поглощает слишком много железа из пищи и не может естественным образом избавиться от избытка. Это может привести к чрезмерному накоплению железа в сердце, поджелудочной железе и печени.

Лечение генетических нарушений обмена веществ следует двум общим принципам:

  • Необходимо сократить или исключить прием любой пищи или лекарств, которые не усваиваются организмом.
  • Заменить или восполнить отсутствующий или неактивный фермент для восстановления метаболизма с помощью диеты и/или лекарств.

Есть более серьезные и распространенные наследственные заболевания, которые не лечатся. Например, мековисцидоз — скопление слизи в лёгких и в пищеварительной системе. От муковисцидоза нет лекарства, но разные методы контроля симптомов помогают предотвращать или уменьшать осложнения и облегчать жизнь с этим заболеванием.

Со временем муковисцидоз прогрессирует и может привести к летальному исходу, особенно при наличии сопутствующих инфекций. Сегодня благодаря достижениям медицины около половины людей с муковисцидозом доживают до 40 лет. Дети, рожденные с этим заболеванием в наши дни, смогут прожить ещё дольше.

Одно из самых тяжелых наследственных заболеваний, спинальная мышечная атрофия, также с недавнего времени поддается лечению с помощью генной терапии. Но доступен этот метод далеко не каждому. Препарат для лечения СМА — самый дорогой лекарственный препарат в мире.

Лечение или купирование генетических заболеваний стало возможным благодаря международному проекту «Геном человека» по изучению и картированию генов человека, произошел прорыв в диагностике и лечении наследственных заболеваний. Результаты проекта помогают не только находить гены, мутации в которых приводят к заболеваниям, но и диагностировать их с максимальной точностью.

Виды генетических заболеваний человека и ключевые методы их выявления

В зависимости от того, чем вызвано генетическое заболевание, врач выбирает и методы обследования пациента. Рассмотрим основные группы патологий.

Хромосомные болезни

Причиной этих генетических заболеваний служит нарушение в количественном составе хромосом или в их строении. Например, при наличии дополнительной (третьей) 21-й хромосомы формируется синдром Дауна. Причиной синдрома Шершевского-Тернера является наличие всего одной Х-хромосомы у женщин. А если у мужчины половые хромосомы присутствуют в сочетании XXY, а не XY, то ему ставится синдром Клайнфельтера.

Многие хромосомные нарушения, например, удвоение или утроение, несовместимы с жизнью. Чаще всего зародыши погибают в утробе, а родившиеся дети живут всего несколько дней[18]. В то же время бывают случаи, когда у человека есть разные виды клеток: несущие патологические хромосомы и не имеющие этих нарушений. Это явление носит название «мозаицизм», и тогда патология может проявляться в меньшей степени или практически не проявляться[19].

Для диагностики проводят кариотипирование. В качестве примера можно привести синдром Клайнфельтера — редкое генетическое заболевание, которым страдают мужчины. Внешне оно выражается в евнухоподобной внешности, увеличении грудных желез, нарушении половой функции. Подробное изучение состава половых хромосом помогает определить, какое именно нарушение произошло у пациента (лишних Х-хромосом может быть несколько). В зависимости от кариотипа варьируется и степень выраженности признаков заболевания [20].

Может быть нарушено и строение хромосом, а не только их количество. В процессе деления клеток, если «что-то пойдет не так», происходит утрата части хромосомы или, напротив, удвоение какого-либо участка. Хромосома может развернуться на 180 градусов (инверсия), или ее концы образуют кольцо. Например, синдром кошачьего крика — это следствие перестройки пятой хромосомы. Дети, родившиеся с такой патологией, специфически кричат (звук напоминает мяуканье кошки). Обычно они погибают в первые годы жизни, так как патология проявляется многочисленными пороками развития внутренних органов[21].

Пациентам с хромосомными заболеваниями назначают цитогенетическое обследование. Обычно ему подвергаются и родители, чтобы установить, имеет ли место наследуемая патология или же это единичный случай[22].

Генные мутации

Нарушения могут произойти не в хромосоме, а лишь на одном ее участке. Тогда мы говорим о генной мутации. Эти заболевания называются моногенными, к ним, в частности, относятся многие нарушения метаболизма: муковисцидоз, фенилкетонурия, андрогенитальный синдром и т.д. Многие из этих заболеваний могут быть выявлены при обязательном скрининге всех младенцев в роддоме. Ребенок, у которого есть отклонения от нормы, может быть направлен на дополнительное генетическое обследование. А принятые вовремя меры позволяют в некоторых случаях предотвратить развитие серьезных нарушений.

В то же время существуют заболевания, вызванные генными мутациями, которые не проявляются ярко и однозначно. В качестве примера можно привести синдром Вольфрама, который дебютирует как сахарный диабет в раннем возрасте, затем проявляется ухудшением зрения или слуха. Врач может подтвердить синдром только по результатам генетической экспертизы.

Мультифакториальные генетические болезни

Они выявляются при ДНК-идентификации. Анализ подтверждает наличие или отсутствие предрасположенности практически к любой патологии: от сахарного диабета до формирования различных зависимостей[23]. Так как роль генетических факторов и факторов внешней среды в развитии заболеваний различна не только для каждой патологии, но и для каждого пациента[24], рекомендации здесь могут быть только строго индивидуальными, сделанными на основании результатов анализов.

В последнее время нередки появления информации об экспресс-тестах, позволяющих определить нарушения в структуре ДНК непосредственно в день анализа. В частности, ученые из Дании создали «светящийся ДНК-тест», который дает результат в течение шести часов[25].

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]